# -*- coding: utf-8 -*- # Copyright (c) 2013, Michael Nooner # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """This module does the actual generation of the QR codes. The QRCodeBuilder builds the code. While the various output methods draw the code into a file. """ #Imports required for 2.x support from __future__ import absolute_import, division, print_function, with_statement, unicode_literals import pyqrcode.tables as tables import io import itertools import math class QRCodeBuilder: """This class generates a QR code based on the standard. It is meant to be used internally, not by users!!! This class implements the tutorials found at: * http://www.thonky.com/qr-code-tutorial/ * http://www.matchadesign.com/blog/qr-code-demystified-part-6/ This class also uses the standard, which can be read online at: http://raidenii.net/files/datasheets/misc/qr_code.pdf Test codes were tested against: http://zxing.org/w/decode.jspx Also, reference codes were generat/ed at: http://www.morovia.com/free-online-barcode-generator/qrcode-maker.php http://demos.telerik.com/aspnet-ajax/barcode/examples/qrcode/defaultcs.aspx QR code Debugger: http://qrlogo.kaarposoft.dk/qrdecode.html """ def __init__(self, data, version, mode, error): """See :py:class:`pyqrcode.QRCode` for information on the parameters.""" #Set what data we are going to use to generate #the QR code self.data = data #Check that the user passed in a valid mode if mode in tables.modes: self.mode = tables.modes[mode] else: raise ValueError('{0} is not a valid mode.'.format(mode)) #Check that the user passed in a valid error level if error in tables.error_level: self.error = tables.error_level[error] else: raise ValueError('{0} is not a valid error ' 'level.'.format(error)) if 1 <= version <= 40: self.version = version else: raise ValueError("Illegal version {0}, version must be between " "1 and 40.".format(version)) #Look up the proper row for error correction code words self.error_code_words = tables.eccwbi[version][self.error] #This property will hold the binary string as it is built self.buffer = io.StringIO() #Create the binary data block self.add_data() #Create the actual QR code self.make_code() def grouper(self, n, iterable, fillvalue=None): """This generator yields a set of tuples, where the iterable is broken into n sized chunks. If the iterable is not evenly sized then fillvalue will be appended to the last tuple to make up the difference. This function is copied from the standard docs on itertools. """ args = [iter(iterable)] * n if hasattr(itertools, 'zip_longest'): return itertools.zip_longest(*args, fillvalue=fillvalue) return itertools.izip_longest(*args, fillvalue=fillvalue) def binary_string(self, data, length): """This method returns a string of length n that is the binary representation of the given data. This function is used to basically create bit fields of a given size. """ return '{{0:0{0}b}}'.format(length).format(int(data)) def get_data_length(self): """QR codes contain a "data length" field. This method creates this field. A binary string representing the appropriate length is returned. """ #The "data length" field varies by the type of code and its mode. #discover how long the "data length" field should be. if 1 <= self.version <= 9: max_version = 9 elif 10 <= self.version <= 26: max_version = 26 elif 27 <= self.version <= 40: max_version = 40 data_length = tables.data_length_field[max_version][self.mode] if self.mode != tables.modes['kanji']: length_string = self.binary_string(len(self.data), data_length) else: length_string = self.binary_string(len(self.data) / 2, data_length) if len(length_string) > data_length: raise ValueError('The supplied data will not fit ' 'within this version of a QRCode.') return length_string def encode(self): """This method encodes the data into a binary string using the appropriate algorithm specified by the mode. """ if self.mode == tables.modes['alphanumeric']: encoded = self.encode_alphanumeric() elif self.mode == tables.modes['numeric']: encoded = self.encode_numeric() elif self.mode == tables.modes['binary']: encoded = self.encode_bytes() elif self.mode == tables.modes['kanji']: encoded = self.encode_kanji() return encoded def encode_alphanumeric(self): """This method encodes the QR code's data if its mode is alphanumeric. It returns the data encoded as a binary string. """ #Convert the string to upper case self.data = self.data.upper() #Change the data such that it uses a QR code ascii table ascii = [] for char in self.data: if isinstance(char, int): ascii.append(tables.ascii_codes[chr(char)]) else: ascii.append(tables.ascii_codes[char]) #Now perform the algorithm that will make the ascii into bit fields with io.StringIO() as buf: for (a,b) in self.grouper(2, ascii): if b is not None: buf.write(self.binary_string((45*a)+b, 11)) else: #This occurs when there is an odd number #of characters in the data buf.write(self.binary_string(a, 6)) #Return the binary string return buf.getvalue() def encode_numeric(self): """This method encodes the QR code's data if its mode is numeric. It returns the data encoded as a binary string. """ with io.StringIO() as buf: #Break the number into groups of three digits for triplet in self.grouper(3, self.data): number = '' for digit in triplet: if isinstance(digit, int): digit = chr(digit) #Only build the string if digit is not None if digit: number = ''.join([number, digit]) else: break #If the number is one digits, make a 4 bit field if len(number) == 1: bin = self.binary_string(number, 4) #If the number is two digits, make a 7 bit field elif len(number) == 2: bin = self.binary_string(number, 7) #Three digit numbers use a 10 bit field else: bin = self.binary_string(number, 10) buf.write(bin) return buf.getvalue() def encode_bytes(self): """This method encodes the QR code's data if its mode is 8 bit mode. It returns the data encoded as a binary string. """ with io.StringIO() as buf: for char in self.data: if not isinstance(char, int): buf.write('{{0:0{0}b}}'.format(8).format(ord(char))) else: buf.write('{{0:0{0}b}}'.format(8).format(char)) return buf.getvalue() def encode_kanji(self): """This method encodes the QR code's data if its mode is kanji. It returns the data encoded as a binary string. """ def two_bytes(data): """Output two byte character code as a single integer.""" def next_byte(b): """Make sure that character code is an int. Python 2 and 3 compatibility. """ if not isinstance(b, int): return ord(b) else: return b #Go through the data by looping to every other character for i in range(0, len(data), 2): yield (next_byte(data[i]) << 8) | next_byte(data[i+1]) #Force the data into Kanji encoded bytes if isinstance(self.data, bytes): data = self.data.decode('shiftjis').encode('shiftjis') else: data = self.data.encode('shiftjis') #Now perform the algorithm that will make the kanji into 13 bit fields with io.StringIO() as buf: for asint in two_bytes(data): #Shift the two byte value as indicated by the standard if 0x8140 <= asint <= 0x9FFC: difference = asint - 0x8140 elif 0xE040 <= asint <= 0xEBBF: difference = asint - 0xC140 #Split the new value into most and least significant bytes msb = (difference >> 8) lsb = (difference & 0x00FF) #Calculate the actual 13 bit binary value buf.write('{0:013b}'.format((msb * 0xC0) + lsb)) #Return the binary string return buf.getvalue() def add_data(self): """This function properly constructs a QR code's data string. It takes into account the interleaving pattern required by the standard. """ #Encode the data into a QR code self.buffer.write(self.binary_string(self.mode, 4)) self.buffer.write(self.get_data_length()) self.buffer.write(self.encode()) #Converts the buffer into "code word" integers. #The online debugger outputs them this way, makes #for easier comparisons. #s = self.buffer.getvalue() #for i in range(0, len(s), 8): # print(int(s[i:i+8], 2), end=',') #print() #Fix for issue #3: https://github.com/mnooner256/pyqrcode/issues/3# #I was performing the terminate_bits() part in the encoding. #As per the standard, terminating bits are only supposed to #be added after the bit stream is complete. I took that to #mean after the encoding, but actually it is after the entire #bit stream has been constructed. bits = self.terminate_bits(self.buffer.getvalue()) if bits is not None: self.buffer.write(bits) #delimit_words and add_words can return None add_bits = self.delimit_words() if add_bits: self.buffer.write(add_bits) fill_bytes = self.add_words() if fill_bytes: self.buffer.write(fill_bytes) #Get a numeric representation of the data data = [int(''.join(x),2) for x in self.grouper(8, self.buffer.getvalue())] #This is the error information for the code error_info = tables.eccwbi[self.version][self.error] #This will hold our data blocks data_blocks = [] #This will hold our error blocks error_blocks = [] #Some codes have the data sliced into two different sized blocks #for example, first two 14 word sized blocks, then four 15 word #sized blocks. This means that slicing size can change over time. data_block_sizes = [error_info[2]] * error_info[1] if error_info[3] != 0: data_block_sizes.extend([error_info[4]] * error_info[3]) #For every block of data, slice the data into the appropriate #sized block current_byte = 0 for n_data_blocks in data_block_sizes: data_blocks.append(data[current_byte:current_byte+n_data_blocks]) current_byte += n_data_blocks #I am not sure about the test after the "and". This was added to #fix a bug where after delimit_words padded the bit stream, a zero #byte ends up being added. After checking around, it seems this extra #byte is supposed to be chopped off, but I cannot find that in the #standard! I am adding it to solve the bug, I believe it is correct. if current_byte < len(data): raise ValueError('Too much data for this code version.') #DEBUG CODE!!!! #Print out the data blocks #print('Data Blocks:\n{0}'.format(data_blocks)) #Calculate the error blocks for n, block in enumerate(data_blocks): error_blocks.append(self.make_error_block(block, n)) #DEBUG CODE!!!! #Print out the error blocks #print('Error Blocks:\n{0}'.format(error_blocks)) #Buffer we will write our data blocks into data_buffer = io.StringIO() #Add the data blocks #Write the buffer such that: block 1 byte 1, block 2 byte 1, etc. largest_block = max(error_info[2], error_info[4])+error_info[0] for i in range(largest_block): for block in data_blocks: if i < len(block): data_buffer.write(self.binary_string(block[i], 8)) #Add the error code blocks. #Write the buffer such that: block 1 byte 1, block 2 byte 2, etc. for i in range(error_info[0]): for block in error_blocks: data_buffer.write(self.binary_string(block[i], 8)) self.buffer = data_buffer def terminate_bits(self, payload): """This method adds zeros to the end of the encoded data so that the encoded data is of the correct length. It returns a binary string containing the bits to be added. """ data_capacity = tables.data_capacity[self.version][self.error][0] if len(payload) > data_capacity: raise ValueError('The supplied data will not fit ' 'within this version of a QR code.') #We must add up to 4 zeros to make up for any shortfall in the #length of the data field. if len(payload) == data_capacity: return None elif len(payload) <= data_capacity-4: bits = self.binary_string(0,4) else: #Make up any shortfall need with less than 4 zeros bits = self.binary_string(0, data_capacity - len(payload)) return bits def delimit_words(self): """This method takes the existing encoded binary string and returns a binary string that will pad it such that the encoded string contains only full bytes. """ bits_short = 8 - (len(self.buffer.getvalue()) % 8) #The string already falls on an byte boundary do nothing if bits_short == 0 or bits_short == 8: return None else: return self.binary_string(0, bits_short) def add_words(self): """The data block must fill the entire data capacity of the QR code. If we fall short, then we must add bytes to the end of the encoded data field. The value of these bytes are specified in the standard. """ data_blocks = len(self.buffer.getvalue()) // 8 total_blocks = tables.data_capacity[self.version][self.error][0] // 8 needed_blocks = total_blocks - data_blocks if needed_blocks == 0: return None #This will return item1, item2, item1, item2, etc. block = itertools.cycle(['11101100', '00010001']) #Create a string of the needed blocks return ''.join([next(block) for x in range(needed_blocks)]) def make_error_block(self, block, block_number): """This function constructs the error correction block of the given data block. This is *very complicated* process. To understand the code you need to read: * http://www.thonky.com/qr-code-tutorial/part-2-error-correction/ * http://www.matchadesign.com/blog/qr-code-demystified-part-4/ """ #Get the error information from the standards table error_info = tables.eccwbi[self.version][self.error] #This is the number of 8-bit words per block if block_number < error_info[1]: code_words_per_block = error_info[2] else: code_words_per_block = error_info[4] #This is the size of the error block error_block_size = error_info[0] #Copy the block as the message polynomial coefficients mp_co = block[:] #Add the error blocks to the message polynomial mp_co.extend([0] * (error_block_size)) #Get the generator polynomial generator = tables.generator_polynomials[error_block_size] #This will hold the temporary sum of the message coefficient and the #generator polynomial gen_result = [0] * len(generator) #Go through every code word in the block for i in range(code_words_per_block): #Get the first coefficient from the message polynomial coefficient = mp_co.pop(0) #Skip coefficients that are zero if coefficient == 0: continue else: #Turn the coefficient into an alpha exponent alpha_exp = tables.galois_antilog[coefficient] #Add the alpha to the generator polynomial for n in range(len(generator)): gen_result[n] = alpha_exp + generator[n] if gen_result[n] > 255: gen_result[n] = gen_result[n] % 255 #Convert the alpha notation back into coefficients gen_result[n] = tables.galois_log[gen_result[n]] #XOR the sum with the message coefficients mp_co[n] = gen_result[n] ^ mp_co[n] #Pad the end of the error blocks with zeros if needed if len(mp_co) < code_words_per_block: mp_co.extend([0] * (code_words_per_block - len(mp_co))) return mp_co def make_code(self): """This method returns the best possible QR code.""" from copy import deepcopy #Get the size of the underlying matrix matrix_size = tables.version_size[self.version] #Create a template matrix we will build the codes with row = [' ' for x in range(matrix_size)] template = [deepcopy(row) for x in range(matrix_size)] #Add mandatory information to the template self.add_detection_pattern(template) self.add_position_pattern(template) self.add_version_pattern(template) #Create the various types of masks of the template self.masks = self.make_masks(template) self.best_mask = self.choose_best_mask() self.code = self.masks[self.best_mask] def add_detection_pattern(self, m): """This method add the detection patterns to the QR code. This lets the scanner orient the pattern. It is required for all QR codes. The detection pattern consists of three boxes located at the upper left, upper right, and lower left corners of the matrix. Also, two special lines called the timing pattern is also necessary. Finally, a single black pixel is added just above the lower left black box. """ #Draw outer black box for i in range(7): inv = -(i+1) for j in [0,6,-1,-7]: m[j][i] = 1 m[i][j] = 1 m[inv][j] = 1 m[j][inv] = 1 #Draw inner white box for i in range(1, 6): inv = -(i+1) for j in [1, 5, -2, -6]: m[j][i] = 0 m[i][j] = 0 m[inv][j] = 0 m[j][inv] = 0 #Draw inner black box for i in range(2, 5): for j in range(2, 5): inv = -(i+1) m[i][j] = 1 m[inv][j] = 1 m[j][inv] = 1 #Draw white border for i in range(8): inv = -(i+1) for j in [7, -8]: m[i][j] = 0 m[j][i] = 0 m[inv][j] = 0 m[j][inv] = 0 #To keep the code short, it draws an extra box #in the lower right corner, this removes it. for i in range(-8, 0): for j in range(-8, 0): m[i][j] = ' ' #Add the timing pattern bit = itertools.cycle([1,0]) for i in range(8, (len(m)-8)): b = next(bit) m[i][6] = b m[6][i] = b #Add the extra black pixel m[-8][8] = 1 def add_position_pattern(self, m): """This method draws the position adjustment patterns onto the QR Code. All QR code versions larger than one require these special boxes called position adjustment patterns. """ #Version 1 does not have a position adjustment pattern if self.version == 1: return #Get the coordinates for where to place the boxes coordinates = tables.position_adjustment[self.version] #Get the max and min coordinates to handle special cases min_coord = coordinates[0] max_coord = coordinates[-1] #Draw a box at each intersection of the coordinates for i in coordinates: for j in coordinates: #Do not draw these boxes because they would #interfere with the detection pattern if (i == min_coord and j == min_coord) or \ (i == min_coord and j == max_coord) or \ (i == max_coord and j == min_coord): continue #Center black pixel m[i][j] = 1 #Surround the pixel with a white box for x in [-1,1]: m[i+x][j+x] = 0 m[i+x][j] = 0 m[i][j+x] = 0 m[i-x][j+x] = 0 m[i+x][j-x] = 0 #Surround the white box with a black box for x in [-2,2]: for y in [0,-1,1]: m[i+x][j+x] = 1 m[i+x][j+y] = 1 m[i+y][j+x] = 1 m[i-x][j+x] = 1 m[i+x][j-x] = 1 def add_version_pattern(self, m): """For QR codes with a version 7 or higher, a special pattern specifying the code's version is required. For further information see: http://www.thonky.com/qr-code-tutorial/format-version-information/#example-of-version-7-information-string """ if self.version < 7: return #Get the bit fields for this code's version #We will iterate across the string, the bit string #needs the least significant digit in the zero-th position field = iter(tables.version_pattern[self.version][::-1]) #Where to start placing the pattern start = len(m)-11 #The version pattern is pretty odd looking for i in range(6): #The pattern is three modules wide for j in range(start, start+3): bit = int(next(field)) #Bottom Left m[i][j] = bit #Upper right m[j][i] = bit def make_masks(self, template): """This method generates all seven masks so that the best mask can be determined. The template parameter is a code matrix that will server as the base for all the generated masks. """ from copy import deepcopy nmasks = len(tables.mask_patterns) masks = [''] * nmasks count = 0 for n in range(nmasks): cur_mask = deepcopy(template) masks[n] = cur_mask #Add the type pattern bits to the code self.add_type_pattern(cur_mask, tables.type_bits[self.error][n]) #Get the mask pattern pattern = tables.mask_patterns[n] #This will read the 1's and 0's one at a time bits = iter(self.buffer.getvalue()) #These will help us do the up, down, up, down pattern row_start = itertools.cycle([len(cur_mask)-1, 0]) row_stop = itertools.cycle([-1,len(cur_mask)]) direction = itertools.cycle([-1, 1]) #The data pattern is added using pairs of columns for column in range(len(cur_mask)-1, 0, -2): #The vertical timing pattern is an exception to the rules, #move the column counter over by one if column <= 6: column = column - 1 #This will let us fill in the pattern #right-left, right-left, etc. column_pair = itertools.cycle([column, column-1]) #Go through each row in the pattern moving up, then down for row in range(next(row_start), next(row_stop), next(direction)): #Fill in the right then left column for i in range(2): col = next(column_pair) #Go to the next column if we encounter a #preexisting pattern (usually an alignment pattern) if cur_mask[row][col] != ' ': continue #Some versions don't have enough bits. You then fill #in the rest of the pattern with 0's. These are #called "remainder bits." try: bit = int(next(bits)) except: bit = 0 #If the pattern is True then flip the bit if pattern(row, col): cur_mask[row][col] = bit ^ 1 else: cur_mask[row][col] = bit #DEBUG CODE!!! #Save all of the masks as png files #for i, m in enumerate(masks): # _png(m, self.version, 'mask-{0}.png'.format(i), 5) return masks def choose_best_mask(self): """This method returns the index of the "best" mask as defined by having the lowest total penalty score. The penalty rules are defined by the standard. The mask with the lowest total score should be the easiest to read by optical scanners. """ self.scores = [] for n in range(len(self.masks)): self.scores.append([0,0,0,0]) #Score penalty rule number 1 #Look for five consecutive squares with the same color. #Each one found gets a penalty of 3 + 1 for every #same color square after the first five in the row. for (n, mask) in enumerate(self.masks): current = mask[0][0] counter = 0 total = 0 #Examine the mask row wise for row in range(0,len(mask)): counter = 0 for col in range(0,len(mask)): bit = mask[row][col] if bit == current: counter += 1 else: if counter >= 5: total += (counter - 5) + 3 counter = 1 current = bit if counter >= 5: total += (counter - 5) + 3 #Examine the mask column wise for col in range(0,len(mask)): counter = 0 for row in range(0,len(mask)): bit = mask[row][col] if bit == current: counter += 1 else: if counter >= 5: total += (counter - 5) + 3 counter = 1 current = bit if counter >= 5: total += (counter - 5) + 3 self.scores[n][0] = total #Score penalty rule 2 #This rule will add 3 to the score for each 2x2 block of the same #colored pixels there are. for (n, mask) in enumerate(self.masks): count = 0 #Don't examine the 0th and Nth row/column for i in range(0, len(mask)-1): for j in range(0, len(mask)-1): if mask[i][j] == mask[i+1][j] and \ mask[i][j] == mask[i][j+1] and \ mask[i][j] == mask[i+1][j+1]: count += 1 self.scores[n][1] = count * 3 #Score penalty rule 3 #This rule looks for 1011101 within the mask prefixed #and/or suffixed by four zeros. patterns = [[0,0,0,0,1,0,1,1,1,0,1], [1,0,1,1,1,0,1,0,0,0,0],] #[0,0,0,0,1,0,1,1,1,0,1,0,0,0,0]] for (n, mask) in enumerate(self.masks): nmatches = 0 for i in range(len(mask)): for j in range(len(mask)): for pattern in patterns: match = True k = j #Look for row matches for p in pattern: if k >= len(mask) or mask[i][k] != p: match = False break k += 1 if match: nmatches += 1 match = True k = j #Look for column matches for p in pattern: if k >= len(mask) or mask[k][i] != p: match = False break k += 1 if match: nmatches += 1 self.scores[n][2] = nmatches * 40 #Score the last rule, penalty rule 4. This rule measures how close #the pattern is to being 50% black. The further it deviates from #this this ideal the higher the penalty. for (n, mask) in enumerate(self.masks): nblack = 0 for row in mask: nblack += sum(row) total_pixels = len(mask)**2 ratio = nblack / total_pixels percent = (ratio * 100) - 50 self.scores[n][3] = int((abs(int(percent)) / 5) * 10) #Calculate the total for each score totals = [0] * len(self.scores) for i in range(len(self.scores)): for j in range(len(self.scores[i])): totals[i] += self.scores[i][j] #DEBUG CODE!!! #Prints out a table of scores #print('Rule Scores\n 1 2 3 4 Total') #for i in range(len(self.scores)): # print(i, end='') # for s in self.scores[i]: # print('{0: >6}'.format(s), end='') # print('{0: >7}'.format(totals[i])) #print('Mask Chosen: {0}'.format(totals.index(min(totals)))) #The lowest total wins return totals.index(min(totals)) def add_type_pattern(self, m, type_bits): """This will add the pattern to the QR code that represents the error level and the type of mask used to make the code. """ field = iter(type_bits) for i in range(7): bit = int(next(field)) #Skip the timing bits if i < 6: m[8][i] = bit else: m[8][i+1] = bit if -8 < -(i+1): m[-(i+1)][8] = bit for i in range(-8,0): bit = int(next(field)) m[8][i] = bit i = -i #Skip timing column if i > 6: m[i][8] = bit else: m[i-1][8] = bit ############################################################################## ############################################################################## # # Output Functions # ############################################################################## ############################################################################## def _get_writable(stream_or_path, mode): """This method returns a tuple containing the stream and a flag to indicate if the stream should be automatically closed. The `stream_or_path` parameter is returned if it is an open writable stream. Otherwise, it treats the `stream_or_path` parameter as a file path and opens it with the given mode. It is used by the svg and png methods to interpret the file parameter. :type stream_or_path: str | io.BufferedIOBase :type mode: str | unicode :rtype: (io.BufferedIOBase, bool) """ is_stream = hasattr(stream_or_path, 'write') if not is_stream: # No stream provided, treat "stream_or_path" as path stream_or_path = open(stream_or_path, mode) return stream_or_path, not is_stream def _get_png_size(version, scale, quiet_zone=4): """See: QRCode.get_png_size This function was abstracted away from QRCode to allow for the output of QR codes during the build process, i.e. for debugging. It works just the same except you must specify the code's version. This is needed to calculate the PNG's size. """ #Formula: scale times number of modules plus the border on each side return (int(scale) * tables.version_size[version]) + (2 * quiet_zone * int(scale)) def _terminal(code, module_color='default', background='reverse', quiet_zone=4): """This method returns a string containing ASCII escape codes, such that if printed to a terminal, it will display a vaild QR code. The module_color and the background color should be keys in the tables.term_colors table for printing using the 8/16 color scheme. Alternatively, they can be a number between 0 and 256 in order to use the 88/256 color scheme. Otherwise, a ValueError will be raised. Note, the code is outputted by changing the background color. Then two spaces are written to the terminal. Finally, the terminal is reset back to how it was. """ buf = io.StringIO() def draw_border(): for i in range(quiet_zone): buf.write(background) if module_color in tables.term_colors: data = '\033[{0}m \033[0m'.format( tables.term_colors[module_color]) elif 0 <= module_color <= 256: data = '\033[48;5;{0}m \033[0m'.format(module_color) else: raise ValueError('The module color, {0}, must a key in ' 'pyqrcode.tables.term_colors or a number ' 'between 0 and 256.'.format( module_color)) if background in tables.term_colors: background = '\033[{0}m \033[0m'.format( tables.term_colors[background]) elif 0 <= background <= 256: background = '\033[48;5;{0}m \033[0m'.format(background) else: raise ValueError('The background color, {0}, must a key in ' 'pyqrcode.tables.term_colors or a number ' 'between 0 and 256.'.format( background)) #This will be the beginning and ending row for the code. border_row = background * (len(code[0]) + (2 * quiet_zone)) #Make sure we begin on a new line, and force the terminal back #to normal buf.write('\n') #QRCodes have a quiet zone consisting of background modules for i in range(quiet_zone): buf.write(border_row) buf.write('\n') for row in code: #Each code has a quiet zone on the left side, this is the left #border for this code draw_border() for bit in row: if bit == 1: buf.write(data) elif bit == 0: buf.write(background) #Each row ends with a quiet zone on the right side, this is the #right hand border background modules draw_border() buf.write('\n') #QRCodes have a background quiet zone row following the code for i in range(quiet_zone): buf.write(border_row) buf.write('\n') return buf.getvalue() def _text(code, quiet_zone=4): """This method returns a text based representation of the QR code. This is useful for debugging purposes. """ buf = io.StringIO() border_row = '0' * (len(code[0]) + (quiet_zone*2)) #Every QR code start with a quiet zone at the top for b in range(quiet_zone): buf.write(border_row) buf.write('\n') for row in code: #Draw the starting quiet zone for b in range(quiet_zone): buf.write('0') #Actually draw the QR code for bit in row: if bit == 1: buf.write('1') elif bit == 0: buf.write('0') #This is for debugging unfinished QR codes, #unset pixels will be spaces. else: buf.write(' ') #Draw the ending quiet zone for b in range(quiet_zone): buf.write('0') buf.write('\n') #Every QR code ends with a quiet zone at the bottom for b in range(quiet_zone): buf.write(border_row) buf.write('\n') return buf.getvalue() def _xbm(code, scale=1, quiet_zone=4): """This function will format the QR code as a X BitMap. This can be used to display the QR code with Tkinter. """ try: str = unicode # Python 2 except NameError: str = __builtins__['str'] buf = io.StringIO() # Calculate the width in pixels pixel_width = (len(code[0]) + quiet_zone * 2) * scale # Add the size information and open the pixel data section buf.write('#define im_width ') buf.write(str(pixel_width)) buf.write('\n') buf.write('#define im_height ') buf.write(str(pixel_width)) buf.write('\n') buf.write('static char im_bits[] = {\n') # Calculate the number of bytes per row byte_width = int(math.ceil(pixel_width / 8.0)) # Add the top quiet zone buf.write(('0x00,' * byte_width + '\n') * quiet_zone * scale) for row in code: # Add the left quiet zone row_bits = '0' * quiet_zone * scale # Add the actual QR code for pixel in row: row_bits += str(pixel) * scale # Add the right quiet zone row_bits += '0' * quiet_zone * scale # Format the row formated_row = '' for b in range(byte_width): formated_row += '0x{0:02x},'.format(int(row_bits[:8][::-1], 2)) row_bits = row_bits[8:] formated_row += '\n' # Add the formatted row buf.write(formated_row * scale) # Add the bottom quiet zone and close the pixel data section buf.write(('0x00,' * byte_width + '\n') * quiet_zone * scale) buf.write('};') return buf.getvalue() def _svg(code, version, file, scale=1, module_color='#000', background=None, quiet_zone=4, xmldecl=True, svgns=True, title=None, svgclass='pyqrcode', lineclass='pyqrline', omithw=False, debug=False): """This function writes the QR code out as an SVG document. The code is drawn by drawing only the modules corresponding to a 1. They are drawn using a line, such that contiguous modules in a row are drawn with a single line. The file parameter is used to specify where to write the document to. It can either be a writable (binary) stream or a file path. The scale parameter is sets how large to draw a single module. By default one pixel is used to draw a single module. This may make the code to small to be read efficiently. Increasing the scale will make the code larger. This method will accept fractional scales (e.g. 2.5). :param module_color: Color of the QR code (default: ``#000`` (black)) :param background: Optional background color. (default: ``None`` (no background)) :param quiet_zone: Border around the QR code (also known as quiet zone) (default: ``4``). Set to zero (``0``) if the code shouldn't have a border. :param xmldecl: Inidcates if the XML declaration header should be written (default: ``True``) :param svgns: Indicates if the SVG namespace should be written (default: ``True``) :param title: Optional title of the generated SVG document. :param svgclass: The CSS class of the SVG document (if set to ``None``, the SVG element won't have a class). :param lineclass: The CSS class of the path element (if set to ``None``, the path won't have a class). :param omithw: Indicates if width and height attributes should be omitted (default: ``False``). If these attributes are omitted, a ``viewBox`` attribute will be added to the document. :param debug: Inidicates if errors in the QR code should be added to the output (default: ``False``). """ from functools import partial from xml.sax.saxutils import quoteattr def write_unicode(write_meth, unicode_str): """\ Encodes the provided string into UTF-8 and writes the result using the `write_meth`. """ write_meth(unicode_str.encode('utf-8')) def line(x, y, length, relative): """Returns coordinates to draw a line with the provided length. """ return '{0}{1} {2}h{3}'.format(('m' if relative else 'M'), x, y, length) def errline(col_number, row_number): """Returns the coordinates to draw an error bit. """ # Debug path uses always absolute coordinates # .5 == stroke / 2 return line(col_number + quiet_zone, row_number + quiet_zone + .5, 1, False) f, autoclose = _get_writable(file, 'wb') write = partial(write_unicode, f.write) write_bytes = f.write # Write the document header if xmldecl: write_bytes(b'\n') write_bytes(b'') if title is not None: write('{0}'.format(title)) # Draw a background rectangle if necessary if background is not None: write('' .format(size, background)) write_bytes(b'') if debug and debug_path: write_bytes(b''.format(debug_path)) # Close document write_bytes(b'\n') if autoclose: f.close() def _png(code, version, file, scale=1, module_color=(0, 0, 0, 255), background=(255, 255, 255, 255), quiet_zone=4, debug=False): """See: pyqrcode.QRCode.png() This function was abstracted away from QRCode to allow for the output of QR codes during the build process, i.e. for debugging. It works just the same except you must specify the code's version. This is needed to calculate the PNG's size. This method will write the given file out as a PNG file. Note, it depends on the PyPNG module to do this. :param module_color: Color of the QR code (default: ``(0, 0, 0, 255)`` (black)) :param background: Optional background color. If set to ``None`` the PNG will have a transparent background. (default: ``(255, 255, 255, 255)`` (white)) :param quiet_zone: Border around the QR code (also known as quiet zone) (default: ``4``). Set to zero (``0``) if the code shouldn't have a border. :param debug: Inidicates if errors in the QR code should be added (as red modules) to the output (default: ``False``). """ import png # Coerce scale parameter into an integer try: scale = int(scale) except ValueError: raise ValueError('The scale parameter must be an integer') def scale_code(size): """To perform the scaling we need to inflate the number of bits. The PNG library expects all of the bits when it draws the PNG. Effectively, we double, tripple, etc. the number of columns and the number of rows. """ # This is one row's worth of each possible module # PNG's use 0 for black and 1 for white, this is the # reverse of the QR standard black = [0] * scale white = [1] * scale # Tuple to lookup colors # The 3rd color is the module_color unless "debug" is enabled colors = (white, black, (([2] * scale) if debug else black)) # Whitespace added on the left and right side border_module = white * quiet_zone # This is the row to show up at the top and bottom border border_row = [[1] * size] * scale * quiet_zone # This will hold the final PNG's bits bits = [] # Add scale rows before the code as a border, # as per the standard bits.extend(border_row) # Add each row of the to the final PNG bits for row in code: tmp_row = [] # Add one all white module to the beginning # to create the vertical border tmp_row.extend(border_module) # Go through each bit in the code for bit in row: # Use the standard color or the "debug" color tmp_row.extend(colors[(bit if bit in (0, 1) else 2)]) # Add one all white module to the end # to create the vertical border tmp_row.extend(border_module) # Copy each row scale times for n in range(scale): bits.append(tmp_row) # Add the bottom border bits.extend(border_row) return bits def png_pallete_color(color): """This creates a palette color from a list or tuple. The list or tuple must be of length 3 (for rgb) or 4 (for rgba). The values must be between 0 and 255. Note rgb colors will be given an added alpha component set to 255. The pallete color is represented as a list, this is what is returned. """ if color is None: return () if not isinstance(color, (tuple, list)): r, g, b = _hex_to_rgb(color) return r, g, b, 255 rgba = [] if not (3 <= len(color) <= 4): raise ValueError('Colors must be a list or tuple of length ' ' 3 or 4. You passed in "{0}".'.format(color)) for c in color: c = int(c) if 0 <= c <= 255: rgba.append(int(c)) else: raise ValueError('Color components must be between 0 and 255') # Make all colors have an alpha channel if len(rgba) == 3: rgba.append(255) return tuple(rgba) if module_color is None: raise ValueError('The module_color must not be None') bitdepth = 1 # foreground aka module color fg_col = png_pallete_color(module_color) transparent = background is None # If background color is set to None, the inverse color of the # foreground color is calculated bg_col = png_pallete_color(background) if background is not None else tuple([255 - c for c in fg_col]) # Assume greyscale if module color is black and background color is white greyscale = fg_col[:3] == (0, 0, 0) and (not debug and transparent or bg_col == (255, 255, 255, 255)) transparent_color = 1 if transparent and greyscale else None palette = [fg_col, bg_col] if not greyscale else None if debug: # Add "red" as color for error modules palette.append((255, 0, 0, 255)) bitdepth = 2 # The size of the PNG size = _get_png_size(version, scale, quiet_zone) # We need to increase the size of the code to match up to the # scale parameter. code_rows = scale_code(size) # Write out the PNG f, autoclose = _get_writable(file, 'wb') w = png.Writer(width=size, height=size, greyscale=greyscale, transparent=transparent_color, palette=palette, bitdepth=bitdepth) try: w.write(f, code_rows) finally: if autoclose: f.close() def _eps(code, version, file_or_path, scale=1, module_color=(0, 0, 0), background=None, quiet_zone=4): """This function writes the QR code out as an EPS document. The code is drawn by drawing only the modules corresponding to a 1. They are drawn using a line, such that contiguous modules in a row are drawn with a single line. The file parameter is used to specify where to write the document to. It can either be a writable (text) stream or a file path. The scale parameter is sets how large to draw a single module. By default one point (1/72 inch) is used to draw a single module. This may make the code to small to be read efficiently. Increasing the scale will make the code larger. This function will accept fractional scales (e.g. 2.5). :param module_color: Color of the QR code (default: ``(0, 0, 0)`` (black)) The color can be specified as triple of floats (range: 0 .. 1) or triple of integers (range: 0 .. 255) or as hexadecimal value (i.e. ``#36c`` or ``#33B200``). :param background: Optional background color. (default: ``None`` (no background)). See `module_color` for the supported values. :param quiet_zone: Border around the QR code (also known as quiet zone) (default: ``4``). Set to zero (``0``) if the code shouldn't have a border. """ from functools import partial import time import textwrap def write_line(writemeth, content): """\ Writes `content` and ``LF``. """ # Postscript: Max. 255 characters per line for line in textwrap.wrap(content, 255): writemeth(line) writemeth('\n') def line(offset, length): """\ Returns coordinates to draw a line with the provided length. """ res = '' if offset > 0: res = ' {0} 0 m'.format(offset) res += ' {0} 0 l'.format(length) return res def rgb_to_floats(color): """\ Converts the provided color into an acceptable format for Postscript's ``setrgbcolor`` """ def to_float(clr): if isinstance(clr, float): if not 0.0 <= clr <= 1.0: raise ValueError('Invalid color "{0}". Not in range 0 .. 1' .format(clr)) return clr if not 0 <= clr <= 255: raise ValueError('Invalid color "{0}". Not in range 0 .. 255' .format(clr)) return 1/255.0 * clr if clr != 1 else clr if not isinstance(color, (tuple, list)): color = _hex_to_rgb(color) return tuple([to_float(i) for i in color]) f, autoclose = _get_writable(file_or_path, 'w') writeline = partial(write_line, f.write) size = tables.version_size[version] * scale + (2 * quiet_zone * scale) # Write common header writeline('%!PS-Adobe-3.0 EPSF-3.0') writeline('%%Creator: PyQRCode ') writeline('%%CreationDate: {0}'.format(time.strftime("%Y-%m-%d %H:%M:%S"))) writeline('%%DocumentData: Clean7Bit') writeline('%%BoundingBox: 0 0 {0} {0}'.format(size)) # Write the shortcuts writeline('/M { moveto } bind def') writeline('/m { rmoveto } bind def') writeline('/l { rlineto } bind def') mod_color = module_color if module_color == (0, 0, 0) else rgb_to_floats(module_color) if background is not None: writeline('{0:f} {1:f} {2:f} setrgbcolor clippath fill' .format(*rgb_to_floats(background))) if mod_color == (0, 0, 0): # Reset RGB color back to black iff module color is black # In case module color != black set the module RGB color later writeline('0 0 0 setrgbcolor') if mod_color != (0, 0, 0): writeline('{0:f} {1:f} {2:f} setrgbcolor'.format(*mod_color)) if scale != 1: writeline('{0} {0} scale'.format(scale)) writeline('newpath') # Current pen position y-axis # Note: 0, 0 = lower left corner in PS coordinate system y = tables.version_size[version] + quiet_zone + .5 # .5 = linewidth / 2 last_bit = 1 # Loop through each row of the code for row in code: offset = 0 # Set x-offset of the pen length = 0 y -= 1 # Move pen along y-axis coord = '{0} {1} M'.format(quiet_zone, y) # Move pen to initial pos for bit in row: if bit != last_bit: if length: coord += line(offset, length) offset = 0 length = 0 last_bit = bit if bit == 1: length += 1 else: offset += 1 if length: coord += line(offset, length) writeline(coord) writeline('stroke') writeline('%%EOF') if autoclose: f.close() def _hex_to_rgb(color): """\ Helper function to convert a color provided in hexadecimal format as RGB triple. """ if color[0] == '#': color = color[1:] if len(color) == 3: color = color[0] * 2 + color[1] * 2 + color[2] * 2 if len(color) != 6: raise ValueError('Input #{0} is not in #RRGGBB format'.format(color)) return [int(n, 16) for n in (color[:2], color[2:4], color[4:])]