1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528 |
- # -*- coding: utf-8 -*-
- # Copyright (c) 2013, Michael Nooner
- # All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions are met:
- # * Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # * Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the distribution.
- # * Neither the name of the copyright holder nor the names of its
- # contributors may be used to endorse or promote products derived from
- # this software without specific prior written permission
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- # ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
- # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- """This module does the actual generation of the QR codes. The QRCodeBuilder
- builds the code. While the various output methods draw the code into a file.
- """
- #Imports required for 2.x support
- from __future__ import absolute_import, division, print_function, with_statement, unicode_literals
- import pyqrcode.tables as tables
- import io
- import itertools
- import math
- class QRCodeBuilder:
- """This class generates a QR code based on the standard. It is meant to
- be used internally, not by users!!!
- This class implements the tutorials found at:
- * http://www.thonky.com/qr-code-tutorial/
- * http://www.matchadesign.com/blog/qr-code-demystified-part-6/
- This class also uses the standard, which can be read online at:
- http://raidenii.net/files/datasheets/misc/qr_code.pdf
- Test codes were tested against:
- http://zxing.org/w/decode.jspx
- Also, reference codes were generat/ed at:
- http://www.morovia.com/free-online-barcode-generator/qrcode-maker.php
- http://demos.telerik.com/aspnet-ajax/barcode/examples/qrcode/defaultcs.aspx
- QR code Debugger:
- http://qrlogo.kaarposoft.dk/qrdecode.html
- """
- def __init__(self, data, version, mode, error):
- """See :py:class:`pyqrcode.QRCode` for information on the parameters."""
- #Set what data we are going to use to generate
- #the QR code
- self.data = data
- #Check that the user passed in a valid mode
- if mode in tables.modes:
- self.mode = tables.modes[mode]
- else:
- raise ValueError('{0} is not a valid mode.'.format(mode))
- #Check that the user passed in a valid error level
- if error in tables.error_level:
- self.error = tables.error_level[error]
- else:
- raise ValueError('{0} is not a valid error '
- 'level.'.format(error))
- if 1 <= version <= 40:
- self.version = version
- else:
- raise ValueError("Illegal version {0}, version must be between "
- "1 and 40.".format(version))
- #Look up the proper row for error correction code words
- self.error_code_words = tables.eccwbi[version][self.error]
- #This property will hold the binary string as it is built
- self.buffer = io.StringIO()
- #Create the binary data block
- self.add_data()
- #Create the actual QR code
- self.make_code()
- def grouper(self, n, iterable, fillvalue=None):
- """This generator yields a set of tuples, where the
- iterable is broken into n sized chunks. If the
- iterable is not evenly sized then fillvalue will
- be appended to the last tuple to make up the difference.
- This function is copied from the standard docs on
- itertools.
- """
- args = [iter(iterable)] * n
- if hasattr(itertools, 'zip_longest'):
- return itertools.zip_longest(*args, fillvalue=fillvalue)
- return itertools.izip_longest(*args, fillvalue=fillvalue)
- def binary_string(self, data, length):
- """This method returns a string of length n that is the binary
- representation of the given data. This function is used to
- basically create bit fields of a given size.
- """
- return '{{0:0{0}b}}'.format(length).format(int(data))
- def get_data_length(self):
- """QR codes contain a "data length" field. This method creates this
- field. A binary string representing the appropriate length is
- returned.
- """
- #The "data length" field varies by the type of code and its mode.
- #discover how long the "data length" field should be.
- if 1 <= self.version <= 9:
- max_version = 9
- elif 10 <= self.version <= 26:
- max_version = 26
- elif 27 <= self.version <= 40:
- max_version = 40
- data_length = tables.data_length_field[max_version][self.mode]
- if self.mode != tables.modes['kanji']:
- length_string = self.binary_string(len(self.data), data_length)
- else:
- length_string = self.binary_string(len(self.data) / 2, data_length)
- if len(length_string) > data_length:
- raise ValueError('The supplied data will not fit '
- 'within this version of a QRCode.')
- return length_string
- def encode(self):
- """This method encodes the data into a binary string using
- the appropriate algorithm specified by the mode.
- """
- if self.mode == tables.modes['alphanumeric']:
- encoded = self.encode_alphanumeric()
- elif self.mode == tables.modes['numeric']:
- encoded = self.encode_numeric()
- elif self.mode == tables.modes['binary']:
- encoded = self.encode_bytes()
- elif self.mode == tables.modes['kanji']:
- encoded = self.encode_kanji()
- return encoded
- def encode_alphanumeric(self):
- """This method encodes the QR code's data if its mode is
- alphanumeric. It returns the data encoded as a binary string.
- """
- #Convert the string to upper case
- self.data = self.data.upper()
- #Change the data such that it uses a QR code ascii table
- ascii = []
- for char in self.data:
- if isinstance(char, int):
- ascii.append(tables.ascii_codes[chr(char)])
- else:
- ascii.append(tables.ascii_codes[char])
-
- #Now perform the algorithm that will make the ascii into bit fields
- with io.StringIO() as buf:
- for (a,b) in self.grouper(2, ascii):
- if b is not None:
- buf.write(self.binary_string((45*a)+b, 11))
- else:
- #This occurs when there is an odd number
- #of characters in the data
- buf.write(self.binary_string(a, 6))
- #Return the binary string
- return buf.getvalue()
- def encode_numeric(self):
- """This method encodes the QR code's data if its mode is
- numeric. It returns the data encoded as a binary string.
- """
- with io.StringIO() as buf:
- #Break the number into groups of three digits
- for triplet in self.grouper(3, self.data):
- number = ''
- for digit in triplet:
- if isinstance(digit, int):
- digit = chr(digit)
- #Only build the string if digit is not None
- if digit:
- number = ''.join([number, digit])
- else:
- break
- #If the number is one digits, make a 4 bit field
- if len(number) == 1:
- bin = self.binary_string(number, 4)
- #If the number is two digits, make a 7 bit field
- elif len(number) == 2:
- bin = self.binary_string(number, 7)
- #Three digit numbers use a 10 bit field
- else:
- bin = self.binary_string(number, 10)
- buf.write(bin)
- return buf.getvalue()
- def encode_bytes(self):
- """This method encodes the QR code's data if its mode is
- 8 bit mode. It returns the data encoded as a binary string.
- """
- with io.StringIO() as buf:
- for char in self.data:
- if not isinstance(char, int):
- buf.write('{{0:0{0}b}}'.format(8).format(ord(char)))
- else:
- buf.write('{{0:0{0}b}}'.format(8).format(char))
- return buf.getvalue()
- def encode_kanji(self):
- """This method encodes the QR code's data if its mode is
- kanji. It returns the data encoded as a binary string.
- """
- def two_bytes(data):
- """Output two byte character code as a single integer."""
- def next_byte(b):
- """Make sure that character code is an int. Python 2 and
- 3 compatibility.
- """
- if not isinstance(b, int):
- return ord(b)
- else:
- return b
- #Go through the data by looping to every other character
- for i in range(0, len(data), 2):
- yield (next_byte(data[i]) << 8) | next_byte(data[i+1])
- #Force the data into Kanji encoded bytes
- if isinstance(self.data, bytes):
- data = self.data.decode('shiftjis').encode('shiftjis')
- else:
- data = self.data.encode('shiftjis')
-
- #Now perform the algorithm that will make the kanji into 13 bit fields
- with io.StringIO() as buf:
- for asint in two_bytes(data):
- #Shift the two byte value as indicated by the standard
- if 0x8140 <= asint <= 0x9FFC:
- difference = asint - 0x8140
- elif 0xE040 <= asint <= 0xEBBF:
- difference = asint - 0xC140
- #Split the new value into most and least significant bytes
- msb = (difference >> 8)
- lsb = (difference & 0x00FF)
- #Calculate the actual 13 bit binary value
- buf.write('{0:013b}'.format((msb * 0xC0) + lsb))
- #Return the binary string
- return buf.getvalue()
- def add_data(self):
- """This function properly constructs a QR code's data string. It takes
- into account the interleaving pattern required by the standard.
- """
- #Encode the data into a QR code
- self.buffer.write(self.binary_string(self.mode, 4))
- self.buffer.write(self.get_data_length())
- self.buffer.write(self.encode())
- #Converts the buffer into "code word" integers.
- #The online debugger outputs them this way, makes
- #for easier comparisons.
- #s = self.buffer.getvalue()
- #for i in range(0, len(s), 8):
- # print(int(s[i:i+8], 2), end=',')
- #print()
-
- #Fix for issue #3: https://github.com/mnooner256/pyqrcode/issues/3#
- #I was performing the terminate_bits() part in the encoding.
- #As per the standard, terminating bits are only supposed to
- #be added after the bit stream is complete. I took that to
- #mean after the encoding, but actually it is after the entire
- #bit stream has been constructed.
- bits = self.terminate_bits(self.buffer.getvalue())
- if bits is not None:
- self.buffer.write(bits)
- #delimit_words and add_words can return None
- add_bits = self.delimit_words()
- if add_bits:
- self.buffer.write(add_bits)
-
- fill_bytes = self.add_words()
- if fill_bytes:
- self.buffer.write(fill_bytes)
-
- #Get a numeric representation of the data
- data = [int(''.join(x),2)
- for x in self.grouper(8, self.buffer.getvalue())]
- #This is the error information for the code
- error_info = tables.eccwbi[self.version][self.error]
- #This will hold our data blocks
- data_blocks = []
- #This will hold our error blocks
- error_blocks = []
- #Some codes have the data sliced into two different sized blocks
- #for example, first two 14 word sized blocks, then four 15 word
- #sized blocks. This means that slicing size can change over time.
- data_block_sizes = [error_info[2]] * error_info[1]
- if error_info[3] != 0:
- data_block_sizes.extend([error_info[4]] * error_info[3])
- #For every block of data, slice the data into the appropriate
- #sized block
- current_byte = 0
- for n_data_blocks in data_block_sizes:
- data_blocks.append(data[current_byte:current_byte+n_data_blocks])
- current_byte += n_data_blocks
-
- #I am not sure about the test after the "and". This was added to
- #fix a bug where after delimit_words padded the bit stream, a zero
- #byte ends up being added. After checking around, it seems this extra
- #byte is supposed to be chopped off, but I cannot find that in the
- #standard! I am adding it to solve the bug, I believe it is correct.
- if current_byte < len(data):
- raise ValueError('Too much data for this code version.')
- #DEBUG CODE!!!!
- #Print out the data blocks
- #print('Data Blocks:\n{0}'.format(data_blocks))
- #Calculate the error blocks
- for n, block in enumerate(data_blocks):
- error_blocks.append(self.make_error_block(block, n))
- #DEBUG CODE!!!!
- #Print out the error blocks
- #print('Error Blocks:\n{0}'.format(error_blocks))
- #Buffer we will write our data blocks into
- data_buffer = io.StringIO()
- #Add the data blocks
- #Write the buffer such that: block 1 byte 1, block 2 byte 1, etc.
- largest_block = max(error_info[2], error_info[4])+error_info[0]
- for i in range(largest_block):
- for block in data_blocks:
- if i < len(block):
- data_buffer.write(self.binary_string(block[i], 8))
- #Add the error code blocks.
- #Write the buffer such that: block 1 byte 1, block 2 byte 2, etc.
- for i in range(error_info[0]):
- for block in error_blocks:
- data_buffer.write(self.binary_string(block[i], 8))
- self.buffer = data_buffer
- def terminate_bits(self, payload):
- """This method adds zeros to the end of the encoded data so that the
- encoded data is of the correct length. It returns a binary string
- containing the bits to be added.
- """
- data_capacity = tables.data_capacity[self.version][self.error][0]
- if len(payload) > data_capacity:
- raise ValueError('The supplied data will not fit '
- 'within this version of a QR code.')
- #We must add up to 4 zeros to make up for any shortfall in the
- #length of the data field.
- if len(payload) == data_capacity:
- return None
- elif len(payload) <= data_capacity-4:
- bits = self.binary_string(0,4)
- else:
- #Make up any shortfall need with less than 4 zeros
- bits = self.binary_string(0, data_capacity - len(payload))
- return bits
- def delimit_words(self):
- """This method takes the existing encoded binary string
- and returns a binary string that will pad it such that
- the encoded string contains only full bytes.
- """
- bits_short = 8 - (len(self.buffer.getvalue()) % 8)
-
- #The string already falls on an byte boundary do nothing
- if bits_short == 0 or bits_short == 8:
- return None
- else:
- return self.binary_string(0, bits_short)
- def add_words(self):
- """The data block must fill the entire data capacity of the QR code.
- If we fall short, then we must add bytes to the end of the encoded
- data field. The value of these bytes are specified in the standard.
- """
- data_blocks = len(self.buffer.getvalue()) // 8
- total_blocks = tables.data_capacity[self.version][self.error][0] // 8
- needed_blocks = total_blocks - data_blocks
- if needed_blocks == 0:
- return None
- #This will return item1, item2, item1, item2, etc.
- block = itertools.cycle(['11101100', '00010001'])
- #Create a string of the needed blocks
- return ''.join([next(block) for x in range(needed_blocks)])
- def make_error_block(self, block, block_number):
- """This function constructs the error correction block of the
- given data block. This is *very complicated* process. To
- understand the code you need to read:
- * http://www.thonky.com/qr-code-tutorial/part-2-error-correction/
- * http://www.matchadesign.com/blog/qr-code-demystified-part-4/
- """
- #Get the error information from the standards table
- error_info = tables.eccwbi[self.version][self.error]
- #This is the number of 8-bit words per block
- if block_number < error_info[1]:
- code_words_per_block = error_info[2]
- else:
- code_words_per_block = error_info[4]
- #This is the size of the error block
- error_block_size = error_info[0]
- #Copy the block as the message polynomial coefficients
- mp_co = block[:]
- #Add the error blocks to the message polynomial
- mp_co.extend([0] * (error_block_size))
- #Get the generator polynomial
- generator = tables.generator_polynomials[error_block_size]
- #This will hold the temporary sum of the message coefficient and the
- #generator polynomial
- gen_result = [0] * len(generator)
- #Go through every code word in the block
- for i in range(code_words_per_block):
- #Get the first coefficient from the message polynomial
- coefficient = mp_co.pop(0)
- #Skip coefficients that are zero
- if coefficient == 0:
- continue
- else:
- #Turn the coefficient into an alpha exponent
- alpha_exp = tables.galois_antilog[coefficient]
- #Add the alpha to the generator polynomial
- for n in range(len(generator)):
- gen_result[n] = alpha_exp + generator[n]
- if gen_result[n] > 255:
- gen_result[n] = gen_result[n] % 255
- #Convert the alpha notation back into coefficients
- gen_result[n] = tables.galois_log[gen_result[n]]
- #XOR the sum with the message coefficients
- mp_co[n] = gen_result[n] ^ mp_co[n]
- #Pad the end of the error blocks with zeros if needed
- if len(mp_co) < code_words_per_block:
- mp_co.extend([0] * (code_words_per_block - len(mp_co)))
- return mp_co
- def make_code(self):
- """This method returns the best possible QR code."""
- from copy import deepcopy
- #Get the size of the underlying matrix
- matrix_size = tables.version_size[self.version]
- #Create a template matrix we will build the codes with
- row = [' ' for x in range(matrix_size)]
- template = [deepcopy(row) for x in range(matrix_size)]
- #Add mandatory information to the template
- self.add_detection_pattern(template)
- self.add_position_pattern(template)
- self.add_version_pattern(template)
- #Create the various types of masks of the template
- self.masks = self.make_masks(template)
- self.best_mask = self.choose_best_mask()
- self.code = self.masks[self.best_mask]
- def add_detection_pattern(self, m):
- """This method add the detection patterns to the QR code. This lets
- the scanner orient the pattern. It is required for all QR codes.
- The detection pattern consists of three boxes located at the upper
- left, upper right, and lower left corners of the matrix. Also, two
- special lines called the timing pattern is also necessary. Finally,
- a single black pixel is added just above the lower left black box.
- """
- #Draw outer black box
- for i in range(7):
- inv = -(i+1)
- for j in [0,6,-1,-7]:
- m[j][i] = 1
- m[i][j] = 1
- m[inv][j] = 1
- m[j][inv] = 1
- #Draw inner white box
- for i in range(1, 6):
- inv = -(i+1)
- for j in [1, 5, -2, -6]:
- m[j][i] = 0
- m[i][j] = 0
- m[inv][j] = 0
- m[j][inv] = 0
- #Draw inner black box
- for i in range(2, 5):
- for j in range(2, 5):
- inv = -(i+1)
- m[i][j] = 1
- m[inv][j] = 1
- m[j][inv] = 1
- #Draw white border
- for i in range(8):
- inv = -(i+1)
- for j in [7, -8]:
- m[i][j] = 0
- m[j][i] = 0
- m[inv][j] = 0
- m[j][inv] = 0
- #To keep the code short, it draws an extra box
- #in the lower right corner, this removes it.
- for i in range(-8, 0):
- for j in range(-8, 0):
- m[i][j] = ' '
- #Add the timing pattern
- bit = itertools.cycle([1,0])
- for i in range(8, (len(m)-8)):
- b = next(bit)
- m[i][6] = b
- m[6][i] = b
- #Add the extra black pixel
- m[-8][8] = 1
- def add_position_pattern(self, m):
- """This method draws the position adjustment patterns onto the QR
- Code. All QR code versions larger than one require these special boxes
- called position adjustment patterns.
- """
- #Version 1 does not have a position adjustment pattern
- if self.version == 1:
- return
- #Get the coordinates for where to place the boxes
- coordinates = tables.position_adjustment[self.version]
- #Get the max and min coordinates to handle special cases
- min_coord = coordinates[0]
- max_coord = coordinates[-1]
- #Draw a box at each intersection of the coordinates
- for i in coordinates:
- for j in coordinates:
- #Do not draw these boxes because they would
- #interfere with the detection pattern
- if (i == min_coord and j == min_coord) or \
- (i == min_coord and j == max_coord) or \
- (i == max_coord and j == min_coord):
- continue
- #Center black pixel
- m[i][j] = 1
- #Surround the pixel with a white box
- for x in [-1,1]:
- m[i+x][j+x] = 0
- m[i+x][j] = 0
- m[i][j+x] = 0
- m[i-x][j+x] = 0
- m[i+x][j-x] = 0
- #Surround the white box with a black box
- for x in [-2,2]:
- for y in [0,-1,1]:
- m[i+x][j+x] = 1
- m[i+x][j+y] = 1
- m[i+y][j+x] = 1
- m[i-x][j+x] = 1
- m[i+x][j-x] = 1
- def add_version_pattern(self, m):
- """For QR codes with a version 7 or higher, a special pattern
- specifying the code's version is required.
- For further information see:
- http://www.thonky.com/qr-code-tutorial/format-version-information/#example-of-version-7-information-string
- """
- if self.version < 7:
- return
- #Get the bit fields for this code's version
- #We will iterate across the string, the bit string
- #needs the least significant digit in the zero-th position
- field = iter(tables.version_pattern[self.version][::-1])
- #Where to start placing the pattern
- start = len(m)-11
- #The version pattern is pretty odd looking
- for i in range(6):
- #The pattern is three modules wide
- for j in range(start, start+3):
- bit = int(next(field))
- #Bottom Left
- m[i][j] = bit
- #Upper right
- m[j][i] = bit
- def make_masks(self, template):
- """This method generates all seven masks so that the best mask can
- be determined. The template parameter is a code matrix that will
- server as the base for all the generated masks.
- """
- from copy import deepcopy
- nmasks = len(tables.mask_patterns)
- masks = [''] * nmasks
- count = 0
- for n in range(nmasks):
- cur_mask = deepcopy(template)
- masks[n] = cur_mask
- #Add the type pattern bits to the code
- self.add_type_pattern(cur_mask, tables.type_bits[self.error][n])
- #Get the mask pattern
- pattern = tables.mask_patterns[n]
- #This will read the 1's and 0's one at a time
- bits = iter(self.buffer.getvalue())
- #These will help us do the up, down, up, down pattern
- row_start = itertools.cycle([len(cur_mask)-1, 0])
- row_stop = itertools.cycle([-1,len(cur_mask)])
- direction = itertools.cycle([-1, 1])
- #The data pattern is added using pairs of columns
- for column in range(len(cur_mask)-1, 0, -2):
- #The vertical timing pattern is an exception to the rules,
- #move the column counter over by one
- if column <= 6:
- column = column - 1
- #This will let us fill in the pattern
- #right-left, right-left, etc.
- column_pair = itertools.cycle([column, column-1])
- #Go through each row in the pattern moving up, then down
- for row in range(next(row_start), next(row_stop),
- next(direction)):
- #Fill in the right then left column
- for i in range(2):
- col = next(column_pair)
- #Go to the next column if we encounter a
- #preexisting pattern (usually an alignment pattern)
- if cur_mask[row][col] != ' ':
- continue
- #Some versions don't have enough bits. You then fill
- #in the rest of the pattern with 0's. These are
- #called "remainder bits."
- try:
- bit = int(next(bits))
- except:
- bit = 0
- #If the pattern is True then flip the bit
- if pattern(row, col):
- cur_mask[row][col] = bit ^ 1
- else:
- cur_mask[row][col] = bit
- #DEBUG CODE!!!
- #Save all of the masks as png files
- #for i, m in enumerate(masks):
- # _png(m, self.version, 'mask-{0}.png'.format(i), 5)
- return masks
- def choose_best_mask(self):
- """This method returns the index of the "best" mask as defined by
- having the lowest total penalty score. The penalty rules are defined
- by the standard. The mask with the lowest total score should be the
- easiest to read by optical scanners.
- """
- self.scores = []
- for n in range(len(self.masks)):
- self.scores.append([0,0,0,0])
- #Score penalty rule number 1
- #Look for five consecutive squares with the same color.
- #Each one found gets a penalty of 3 + 1 for every
- #same color square after the first five in the row.
- for (n, mask) in enumerate(self.masks):
- current = mask[0][0]
- counter = 0
- total = 0
- #Examine the mask row wise
- for row in range(0,len(mask)):
- counter = 0
- for col in range(0,len(mask)):
- bit = mask[row][col]
- if bit == current:
- counter += 1
- else:
- if counter >= 5:
- total += (counter - 5) + 3
- counter = 1
- current = bit
- if counter >= 5:
- total += (counter - 5) + 3
- #Examine the mask column wise
- for col in range(0,len(mask)):
- counter = 0
- for row in range(0,len(mask)):
- bit = mask[row][col]
- if bit == current:
- counter += 1
- else:
- if counter >= 5:
- total += (counter - 5) + 3
- counter = 1
- current = bit
- if counter >= 5:
- total += (counter - 5) + 3
- self.scores[n][0] = total
- #Score penalty rule 2
- #This rule will add 3 to the score for each 2x2 block of the same
- #colored pixels there are.
- for (n, mask) in enumerate(self.masks):
- count = 0
- #Don't examine the 0th and Nth row/column
- for i in range(0, len(mask)-1):
- for j in range(0, len(mask)-1):
- if mask[i][j] == mask[i+1][j] and \
- mask[i][j] == mask[i][j+1] and \
- mask[i][j] == mask[i+1][j+1]:
- count += 1
- self.scores[n][1] = count * 3
- #Score penalty rule 3
- #This rule looks for 1011101 within the mask prefixed
- #and/or suffixed by four zeros.
- patterns = [[0,0,0,0,1,0,1,1,1,0,1],
- [1,0,1,1,1,0,1,0,0,0,0],]
- #[0,0,0,0,1,0,1,1,1,0,1,0,0,0,0]]
- for (n, mask) in enumerate(self.masks):
- nmatches = 0
- for i in range(len(mask)):
- for j in range(len(mask)):
- for pattern in patterns:
- match = True
- k = j
- #Look for row matches
- for p in pattern:
- if k >= len(mask) or mask[i][k] != p:
- match = False
- break
- k += 1
- if match:
- nmatches += 1
- match = True
- k = j
- #Look for column matches
- for p in pattern:
- if k >= len(mask) or mask[k][i] != p:
- match = False
- break
- k += 1
- if match:
- nmatches += 1
- self.scores[n][2] = nmatches * 40
- #Score the last rule, penalty rule 4. This rule measures how close
- #the pattern is to being 50% black. The further it deviates from
- #this this ideal the higher the penalty.
- for (n, mask) in enumerate(self.masks):
- nblack = 0
- for row in mask:
- nblack += sum(row)
- total_pixels = len(mask)**2
- ratio = nblack / total_pixels
- percent = (ratio * 100) - 50
- self.scores[n][3] = int((abs(int(percent)) / 5) * 10)
- #Calculate the total for each score
- totals = [0] * len(self.scores)
- for i in range(len(self.scores)):
- for j in range(len(self.scores[i])):
- totals[i] += self.scores[i][j]
- #DEBUG CODE!!!
- #Prints out a table of scores
- #print('Rule Scores\n 1 2 3 4 Total')
- #for i in range(len(self.scores)):
- # print(i, end='')
- # for s in self.scores[i]:
- # print('{0: >6}'.format(s), end='')
- # print('{0: >7}'.format(totals[i]))
- #print('Mask Chosen: {0}'.format(totals.index(min(totals))))
- #The lowest total wins
- return totals.index(min(totals))
- def add_type_pattern(self, m, type_bits):
- """This will add the pattern to the QR code that represents the error
- level and the type of mask used to make the code.
- """
- field = iter(type_bits)
- for i in range(7):
- bit = int(next(field))
- #Skip the timing bits
- if i < 6:
- m[8][i] = bit
- else:
- m[8][i+1] = bit
- if -8 < -(i+1):
- m[-(i+1)][8] = bit
- for i in range(-8,0):
- bit = int(next(field))
- m[8][i] = bit
- i = -i
- #Skip timing column
- if i > 6:
- m[i][8] = bit
- else:
- m[i-1][8] = bit
- ##############################################################################
- ##############################################################################
- #
- # Output Functions
- #
- ##############################################################################
- ##############################################################################
- def _get_writable(stream_or_path, mode):
- """This method returns a tuple containing the stream and a flag to indicate
- if the stream should be automatically closed.
- The `stream_or_path` parameter is returned if it is an open writable stream.
- Otherwise, it treats the `stream_or_path` parameter as a file path and
- opens it with the given mode.
- It is used by the svg and png methods to interpret the file parameter.
- :type stream_or_path: str | io.BufferedIOBase
- :type mode: str | unicode
- :rtype: (io.BufferedIOBase, bool)
- """
- is_stream = hasattr(stream_or_path, 'write')
- if not is_stream:
- # No stream provided, treat "stream_or_path" as path
- stream_or_path = open(stream_or_path, mode)
- return stream_or_path, not is_stream
- def _get_png_size(version, scale, quiet_zone=4):
- """See: QRCode.get_png_size
- This function was abstracted away from QRCode to allow for the output of
- QR codes during the build process, i.e. for debugging. It works
- just the same except you must specify the code's version. This is needed
- to calculate the PNG's size.
- """
- #Formula: scale times number of modules plus the border on each side
- return (int(scale) * tables.version_size[version]) + (2 * quiet_zone * int(scale))
- def _terminal(code, module_color='default', background='reverse', quiet_zone=4):
- """This method returns a string containing ASCII escape codes,
- such that if printed to a terminal, it will display a vaild
- QR code. The module_color and the background color should be keys
- in the tables.term_colors table for printing using the 8/16
- color scheme. Alternatively, they can be a number between 0 and
- 256 in order to use the 88/256 color scheme. Otherwise, a
- ValueError will be raised.
- Note, the code is outputted by changing the background color. Then
- two spaces are written to the terminal. Finally, the terminal is
- reset back to how it was.
- """
- buf = io.StringIO()
- def draw_border():
- for i in range(quiet_zone):
- buf.write(background)
- if module_color in tables.term_colors:
- data = '\033[{0}m \033[0m'.format(
- tables.term_colors[module_color])
- elif 0 <= module_color <= 256:
- data = '\033[48;5;{0}m \033[0m'.format(module_color)
- else:
- raise ValueError('The module color, {0}, must a key in '
- 'pyqrcode.tables.term_colors or a number '
- 'between 0 and 256.'.format(
- module_color))
- if background in tables.term_colors:
- background = '\033[{0}m \033[0m'.format(
- tables.term_colors[background])
- elif 0 <= background <= 256:
- background = '\033[48;5;{0}m \033[0m'.format(background)
- else:
- raise ValueError('The background color, {0}, must a key in '
- 'pyqrcode.tables.term_colors or a number '
- 'between 0 and 256.'.format(
- background))
- #This will be the beginning and ending row for the code.
- border_row = background * (len(code[0]) + (2 * quiet_zone))
- #Make sure we begin on a new line, and force the terminal back
- #to normal
- buf.write('\n')
- #QRCodes have a quiet zone consisting of background modules
- for i in range(quiet_zone):
- buf.write(border_row)
- buf.write('\n')
- for row in code:
- #Each code has a quiet zone on the left side, this is the left
- #border for this code
- draw_border()
- for bit in row:
- if bit == 1:
- buf.write(data)
- elif bit == 0:
- buf.write(background)
-
- #Each row ends with a quiet zone on the right side, this is the
- #right hand border background modules
- draw_border()
- buf.write('\n')
- #QRCodes have a background quiet zone row following the code
- for i in range(quiet_zone):
- buf.write(border_row)
- buf.write('\n')
- return buf.getvalue()
- def _text(code, quiet_zone=4):
- """This method returns a text based representation of the QR code.
- This is useful for debugging purposes.
- """
- buf = io.StringIO()
- border_row = '0' * (len(code[0]) + (quiet_zone*2))
- #Every QR code start with a quiet zone at the top
- for b in range(quiet_zone):
- buf.write(border_row)
- buf.write('\n')
- for row in code:
- #Draw the starting quiet zone
- for b in range(quiet_zone):
- buf.write('0')
- #Actually draw the QR code
- for bit in row:
- if bit == 1:
- buf.write('1')
- elif bit == 0:
- buf.write('0')
- #This is for debugging unfinished QR codes,
- #unset pixels will be spaces.
- else:
- buf.write(' ')
-
- #Draw the ending quiet zone
- for b in range(quiet_zone):
- buf.write('0')
- buf.write('\n')
- #Every QR code ends with a quiet zone at the bottom
- for b in range(quiet_zone):
- buf.write(border_row)
- buf.write('\n')
- return buf.getvalue()
- def _xbm(code, scale=1, quiet_zone=4):
- """This function will format the QR code as a X BitMap.
- This can be used to display the QR code with Tkinter.
- """
- try:
- str = unicode # Python 2
- except NameError:
- str = __builtins__['str']
-
- buf = io.StringIO()
-
- # Calculate the width in pixels
- pixel_width = (len(code[0]) + quiet_zone * 2) * scale
-
- # Add the size information and open the pixel data section
- buf.write('#define im_width ')
- buf.write(str(pixel_width))
- buf.write('\n')
- buf.write('#define im_height ')
- buf.write(str(pixel_width))
- buf.write('\n')
- buf.write('static char im_bits[] = {\n')
-
- # Calculate the number of bytes per row
- byte_width = int(math.ceil(pixel_width / 8.0))
-
- # Add the top quiet zone
- buf.write(('0x00,' * byte_width + '\n') * quiet_zone * scale)
- for row in code:
- # Add the left quiet zone
- row_bits = '0' * quiet_zone * scale
- # Add the actual QR code
- for pixel in row:
- row_bits += str(pixel) * scale
- # Add the right quiet zone
- row_bits += '0' * quiet_zone * scale
- # Format the row
- formated_row = ''
- for b in range(byte_width):
- formated_row += '0x{0:02x},'.format(int(row_bits[:8][::-1], 2))
- row_bits = row_bits[8:]
- formated_row += '\n'
- # Add the formatted row
- buf.write(formated_row * scale)
- # Add the bottom quiet zone and close the pixel data section
- buf.write(('0x00,' * byte_width + '\n') * quiet_zone * scale)
- buf.write('};')
-
- return buf.getvalue()
- def _svg(code, version, file, scale=1, module_color='#000', background=None,
- quiet_zone=4, xmldecl=True, svgns=True, title=None, svgclass='pyqrcode',
- lineclass='pyqrline', omithw=False, debug=False):
- """This function writes the QR code out as an SVG document. The
- code is drawn by drawing only the modules corresponding to a 1. They
- are drawn using a line, such that contiguous modules in a row
- are drawn with a single line. The file parameter is used to
- specify where to write the document to. It can either be a writable (binary)
- stream or a file path. The scale parameter is sets how large to draw
- a single module. By default one pixel is used to draw a single
- module. This may make the code to small to be read efficiently.
- Increasing the scale will make the code larger. This method will accept
- fractional scales (e.g. 2.5).
- :param module_color: Color of the QR code (default: ``#000`` (black))
- :param background: Optional background color.
- (default: ``None`` (no background))
- :param quiet_zone: Border around the QR code (also known as quiet zone)
- (default: ``4``). Set to zero (``0``) if the code shouldn't
- have a border.
- :param xmldecl: Inidcates if the XML declaration header should be written
- (default: ``True``)
- :param svgns: Indicates if the SVG namespace should be written
- (default: ``True``)
- :param title: Optional title of the generated SVG document.
- :param svgclass: The CSS class of the SVG document
- (if set to ``None``, the SVG element won't have a class).
- :param lineclass: The CSS class of the path element
- (if set to ``None``, the path won't have a class).
- :param omithw: Indicates if width and height attributes should be
- omitted (default: ``False``). If these attributes are omitted,
- a ``viewBox`` attribute will be added to the document.
- :param debug: Inidicates if errors in the QR code should be added to the
- output (default: ``False``).
- """
- from functools import partial
- from xml.sax.saxutils import quoteattr
- def write_unicode(write_meth, unicode_str):
- """\
- Encodes the provided string into UTF-8 and writes the result using
- the `write_meth`.
- """
- write_meth(unicode_str.encode('utf-8'))
- def line(x, y, length, relative):
- """Returns coordinates to draw a line with the provided length.
- """
- return '{0}{1} {2}h{3}'.format(('m' if relative else 'M'), x, y, length)
- def errline(col_number, row_number):
- """Returns the coordinates to draw an error bit.
- """
- # Debug path uses always absolute coordinates
- # .5 == stroke / 2
- return line(col_number + quiet_zone, row_number + quiet_zone + .5, 1, False)
- f, autoclose = _get_writable(file, 'wb')
- write = partial(write_unicode, f.write)
- write_bytes = f.write
- # Write the document header
- if xmldecl:
- write_bytes(b'<?xml version="1.0" encoding="UTF-8"?>\n')
- write_bytes(b'<svg')
- if svgns:
- write_bytes(b' xmlns="http://www.w3.org/2000/svg"')
- size = tables.version_size[version] * scale + (2 * quiet_zone * scale)
- if not omithw:
- write(' height="{0}" width="{0}"'.format(size))
- else:
- write(' viewBox="0 0 {0} {0}"'.format(size))
- if svgclass is not None:
- write_bytes(b' class=')
- write(quoteattr(svgclass))
- write_bytes(b'>')
- if title is not None:
- write('<title>{0}</title>'.format(title))
- # Draw a background rectangle if necessary
- if background is not None:
- write('<path fill="{1}" d="M0 0h{0}v{0}h-{0}z"/>'
- .format(size, background))
- write_bytes(b'<path')
- if scale != 1:
- write(' transform="scale({0})"'.format(scale))
- if module_color is not None:
- write_bytes(b' stroke=')
- write(quoteattr(module_color))
- if lineclass is not None:
- write_bytes(b' class=')
- write(quoteattr(lineclass))
- write_bytes(b' d="')
- # Used to keep track of unknown/error coordinates.
- debug_path = ''
- # Current pen pointer position
- x, y = -quiet_zone, quiet_zone - .5 # .5 == stroke-width / 2
- wrote_bit = False
- # Loop through each row of the code
- for rnumber, row in enumerate(code):
- start_column = 0 # Reset the starting column number
- coord = '' # Reset row coordinates
- y += 1 # Pen position on y-axis
- length = 0 # Reset line length
- # Examine every bit in the row
- for colnumber, bit in enumerate(row):
- if bit == 1:
- length += 1
- else:
- if length:
- x = start_column - x
- coord += line(x, y, length, relative=wrote_bit)
- x = start_column + length
- y = 0 # y-axis won't change unless the row changes
- length = 0
- wrote_bit = True
- start_column = colnumber + 1
- if debug and bit != 0:
- debug_path += errline(colnumber, rnumber)
- if length:
- x = start_column - x
- coord += line(x, y, length, relative=wrote_bit)
- x = start_column + length
- wrote_bit = True
- write(coord)
- # Close path
- write_bytes(b'"/>')
- if debug and debug_path:
- write_bytes(b'<path')
- if scale != 1:
- write(' transform="scale({0})"'.format(scale))
- write(' class="pyqrerr" stroke="red" d="{0}"/>'.format(debug_path))
- # Close document
- write_bytes(b'</svg>\n')
- if autoclose:
- f.close()
- def _png(code, version, file, scale=1, module_color=(0, 0, 0, 255),
- background=(255, 255, 255, 255), quiet_zone=4, debug=False):
- """See: pyqrcode.QRCode.png()
- This function was abstracted away from QRCode to allow for the output of
- QR codes during the build process, i.e. for debugging. It works
- just the same except you must specify the code's version. This is needed
- to calculate the PNG's size.
- This method will write the given file out as a PNG file. Note, it
- depends on the PyPNG module to do this.
- :param module_color: Color of the QR code (default: ``(0, 0, 0, 255)`` (black))
- :param background: Optional background color. If set to ``None`` the PNG
- will have a transparent background.
- (default: ``(255, 255, 255, 255)`` (white))
- :param quiet_zone: Border around the QR code (also known as quiet zone)
- (default: ``4``). Set to zero (``0``) if the code shouldn't
- have a border.
- :param debug: Inidicates if errors in the QR code should be added (as red
- modules) to the output (default: ``False``).
- """
- import png
-
- # Coerce scale parameter into an integer
- try:
- scale = int(scale)
- except ValueError:
- raise ValueError('The scale parameter must be an integer')
- def scale_code(size):
- """To perform the scaling we need to inflate the number of bits.
- The PNG library expects all of the bits when it draws the PNG.
- Effectively, we double, tripple, etc. the number of columns and
- the number of rows.
- """
- # This is one row's worth of each possible module
- # PNG's use 0 for black and 1 for white, this is the
- # reverse of the QR standard
- black = [0] * scale
- white = [1] * scale
- # Tuple to lookup colors
- # The 3rd color is the module_color unless "debug" is enabled
- colors = (white, black, (([2] * scale) if debug else black))
- # Whitespace added on the left and right side
- border_module = white * quiet_zone
- # This is the row to show up at the top and bottom border
- border_row = [[1] * size] * scale * quiet_zone
- # This will hold the final PNG's bits
- bits = []
- # Add scale rows before the code as a border,
- # as per the standard
- bits.extend(border_row)
- # Add each row of the to the final PNG bits
- for row in code:
- tmp_row = []
- # Add one all white module to the beginning
- # to create the vertical border
- tmp_row.extend(border_module)
- # Go through each bit in the code
- for bit in row:
- # Use the standard color or the "debug" color
- tmp_row.extend(colors[(bit if bit in (0, 1) else 2)])
- # Add one all white module to the end
- # to create the vertical border
- tmp_row.extend(border_module)
- # Copy each row scale times
- for n in range(scale):
- bits.append(tmp_row)
- # Add the bottom border
- bits.extend(border_row)
- return bits
- def png_pallete_color(color):
- """This creates a palette color from a list or tuple. The list or
- tuple must be of length 3 (for rgb) or 4 (for rgba). The values
- must be between 0 and 255. Note rgb colors will be given an added
- alpha component set to 255.
- The pallete color is represented as a list, this is what is returned.
- """
- if color is None:
- return ()
- if not isinstance(color, (tuple, list)):
- r, g, b = _hex_to_rgb(color)
- return r, g, b, 255
- rgba = []
- if not (3 <= len(color) <= 4):
- raise ValueError('Colors must be a list or tuple of length '
- ' 3 or 4. You passed in "{0}".'.format(color))
- for c in color:
- c = int(c)
- if 0 <= c <= 255:
- rgba.append(int(c))
- else:
- raise ValueError('Color components must be between 0 and 255')
- # Make all colors have an alpha channel
- if len(rgba) == 3:
- rgba.append(255)
- return tuple(rgba)
- if module_color is None:
- raise ValueError('The module_color must not be None')
- bitdepth = 1
- # foreground aka module color
- fg_col = png_pallete_color(module_color)
- transparent = background is None
- # If background color is set to None, the inverse color of the
- # foreground color is calculated
- bg_col = png_pallete_color(background) if background is not None else tuple([255 - c for c in fg_col])
- # Assume greyscale if module color is black and background color is white
- greyscale = fg_col[:3] == (0, 0, 0) and (not debug and transparent or bg_col == (255, 255, 255, 255))
- transparent_color = 1 if transparent and greyscale else None
- palette = [fg_col, bg_col] if not greyscale else None
- if debug:
- # Add "red" as color for error modules
- palette.append((255, 0, 0, 255))
- bitdepth = 2
- # The size of the PNG
- size = _get_png_size(version, scale, quiet_zone)
- # We need to increase the size of the code to match up to the
- # scale parameter.
- code_rows = scale_code(size)
- # Write out the PNG
- f, autoclose = _get_writable(file, 'wb')
- w = png.Writer(width=size, height=size, greyscale=greyscale,
- transparent=transparent_color, palette=palette,
- bitdepth=bitdepth)
- try:
- w.write(f, code_rows)
- finally:
- if autoclose:
- f.close()
- def _eps(code, version, file_or_path, scale=1, module_color=(0, 0, 0),
- background=None, quiet_zone=4):
- """This function writes the QR code out as an EPS document. The
- code is drawn by drawing only the modules corresponding to a 1. They
- are drawn using a line, such that contiguous modules in a row
- are drawn with a single line. The file parameter is used to
- specify where to write the document to. It can either be a writable (text)
- stream or a file path. The scale parameter is sets how large to draw
- a single module. By default one point (1/72 inch) is used to draw a single
- module. This may make the code to small to be read efficiently.
- Increasing the scale will make the code larger. This function will accept
- fractional scales (e.g. 2.5).
- :param module_color: Color of the QR code (default: ``(0, 0, 0)`` (black))
- The color can be specified as triple of floats (range: 0 .. 1) or
- triple of integers (range: 0 .. 255) or as hexadecimal value (i.e.
- ``#36c`` or ``#33B200``).
- :param background: Optional background color.
- (default: ``None`` (no background)). See `module_color` for the
- supported values.
- :param quiet_zone: Border around the QR code (also known as quiet zone)
- (default: ``4``). Set to zero (``0``) if the code shouldn't
- have a border.
- """
- from functools import partial
- import time
- import textwrap
- def write_line(writemeth, content):
- """\
- Writes `content` and ``LF``.
- """
- # Postscript: Max. 255 characters per line
- for line in textwrap.wrap(content, 255):
- writemeth(line)
- writemeth('\n')
- def line(offset, length):
- """\
- Returns coordinates to draw a line with the provided length.
- """
- res = ''
- if offset > 0:
- res = ' {0} 0 m'.format(offset)
- res += ' {0} 0 l'.format(length)
- return res
- def rgb_to_floats(color):
- """\
- Converts the provided color into an acceptable format for Postscript's
- ``setrgbcolor``
- """
- def to_float(clr):
- if isinstance(clr, float):
- if not 0.0 <= clr <= 1.0:
- raise ValueError('Invalid color "{0}". Not in range 0 .. 1'
- .format(clr))
- return clr
- if not 0 <= clr <= 255:
- raise ValueError('Invalid color "{0}". Not in range 0 .. 255'
- .format(clr))
- return 1/255.0 * clr if clr != 1 else clr
- if not isinstance(color, (tuple, list)):
- color = _hex_to_rgb(color)
- return tuple([to_float(i) for i in color])
- f, autoclose = _get_writable(file_or_path, 'w')
- writeline = partial(write_line, f.write)
- size = tables.version_size[version] * scale + (2 * quiet_zone * scale)
- # Write common header
- writeline('%!PS-Adobe-3.0 EPSF-3.0')
- writeline('%%Creator: PyQRCode <https://pypi.python.org/pypi/PyQRCode/>')
- writeline('%%CreationDate: {0}'.format(time.strftime("%Y-%m-%d %H:%M:%S")))
- writeline('%%DocumentData: Clean7Bit')
- writeline('%%BoundingBox: 0 0 {0} {0}'.format(size))
- # Write the shortcuts
- writeline('/M { moveto } bind def')
- writeline('/m { rmoveto } bind def')
- writeline('/l { rlineto } bind def')
- mod_color = module_color if module_color == (0, 0, 0) else rgb_to_floats(module_color)
- if background is not None:
- writeline('{0:f} {1:f} {2:f} setrgbcolor clippath fill'
- .format(*rgb_to_floats(background)))
- if mod_color == (0, 0, 0):
- # Reset RGB color back to black iff module color is black
- # In case module color != black set the module RGB color later
- writeline('0 0 0 setrgbcolor')
- if mod_color != (0, 0, 0):
- writeline('{0:f} {1:f} {2:f} setrgbcolor'.format(*mod_color))
- if scale != 1:
- writeline('{0} {0} scale'.format(scale))
- writeline('newpath')
- # Current pen position y-axis
- # Note: 0, 0 = lower left corner in PS coordinate system
- y = tables.version_size[version] + quiet_zone + .5 # .5 = linewidth / 2
- last_bit = 1
- # Loop through each row of the code
- for row in code:
- offset = 0 # Set x-offset of the pen
- length = 0
- y -= 1 # Move pen along y-axis
- coord = '{0} {1} M'.format(quiet_zone, y) # Move pen to initial pos
- for bit in row:
- if bit != last_bit:
- if length:
- coord += line(offset, length)
- offset = 0
- length = 0
- last_bit = bit
- if bit == 1:
- length += 1
- else:
- offset += 1
- if length:
- coord += line(offset, length)
- writeline(coord)
- writeline('stroke')
- writeline('%%EOF')
- if autoclose:
- f.close()
- def _hex_to_rgb(color):
- """\
- Helper function to convert a color provided in hexadecimal format
- as RGB triple.
- """
- if color[0] == '#':
- color = color[1:]
- if len(color) == 3:
- color = color[0] * 2 + color[1] * 2 + color[2] * 2
- if len(color) != 6:
- raise ValueError('Input #{0} is not in #RRGGBB format'.format(color))
- return [int(n, 16) for n in (color[:2], color[2:4], color[4:])]
|